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We have investigated the transmission spectra of a Fabry-Perot interferometer (FPI) with squeezed

vacuum state injection and non-Gaussian detection, including photon number resolving detection

and parity detection. In order to show the suitability of the system, parallel studies were made of

the performance of two other light sources: coherent state of light and Fock state of light either

with classical mean intensity detection or with non-Gaussian detection. This shows that by using

the squeezed vacuum state and non-Gaussian detection simultaneously, the resolution of the FPI

can go far beyond the cavity standard bandwidth limit based on the current techniques. The

sensitivity of the scheme has also been explored and it shows that the minimum detectable

sensitivity is better than that of the other schemes. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4869455]

It is well known that the fundamental limits of measure-

ment precision are basically determined by the Heisenberg

uncertainty principle. These limits are impossible to be

exceeded by conventional measurement strategies.

Conventional limits such as the shot noise limit (SNL) or the

standard quantum limit (SQL) to the precision measurements

can be surpassed by using quantum technique, such as

squeezed states and entangled states.1–3 Since the beginning

of generation of squeezed states, considerable effort has

gone into expanding it to various precision measurements,

which lies at the heart of modern science and engineering.4

Quantum metrology is to study all kinds of quantum techni-

ques that enable one to gain advantages over purely conven-

tional approaches.5 With the variety of quantum light

sources to hand, quantum optics has been making impressive

advances in exploring ultra-high precision measurement

beyond the SQL6 or even Heisenberg limit (HL).1,7,8 In the

past decade, quantum metrology,9 as the emerging interdisci-

plinary field, has shown the potential to impact not only on

fundamental science but also precision measurement

technology.

There are several approaches to improve the precision

of the measurement in SU(2) interferometer. The first one is

to use the quantum-light sources directly. For example, a

well-known strategy is to use the squeezed vacuum to inject

the unused port of the interferometer10,11 to improve the

measurement precision, which has been applied to gravita-

tional wave detection in the project of Laser Interferometer

Gravitational Wave Observatory (LIGO).12,13 With the de-

velopment of optical techniques, large squeezing of vacuum

state with 12.3 dB has been generated experimentally14 and

in the foreseeable future, even higher squeezing could be

achieved and the actual application of such quantum light

sources may be feasible. Here, the focus is turned away from

unavailable state such as NOON state with large mean

photon number and related state with current technology and

instead of the use of the squeezed vacuum state (SVS).

The second approach is to use quantum detection, such

as photon number resolving detection (PNRD), the typical

non-Gaussian measurement, in contrast to the classical mean

intensity detection (MID). Recent optical detection by the

transition edge sensor (TES) technique has provided the

photon number resolving method with high detection effi-

ciency.15 This TES has been introduced in the Fabry-Perot

interferometer (FPI) to exceed classical detection.16 As the

development of photon detection technique progresses, TES

may be widely used in the field of quantum optics and quan-

tum metrology.17

In this paper, the resolution and sensitivity of the usual

FPI are explored by using both approaches simultaneously,

i.e., the quantum light source and the quantum detection

method. The result shows that the resolution of the FPI is

beyond the SQL given by coherent state (CS) injection with

conventional classical detection, even better than that by

Fock state (FS) with PNRD. It is striking that the numerical

calculation shows that the sensitivity of the FPI, correspond-

ing to the sensitivity of length or frequency the FPI can

sense, is even better than that of the Heisenberg limit for

small photon numbers. The calculation is based on the state-

of-the-art technology of the SVS with PNRD and parity

detection (PD), and the scheme is feasible for physical

implementations.

Consider the standard FPI in Fig. 1(a). Specifically, a

symmetric cavity with length L is introduced, i.e., both input

and output mirrors have the identical reflection and transmis-

sion coefficients r0 and t0. Quantum mechanically, the whole

FPI can be regarded as a black box with the input modes â1

being a quantum or classical light beam on the one port and

a vacuum input of â2 from the other, and the corresponding

two output modes â3 and â4, respectively. Thus, the system

is equivalent to an effective beam-splitter (BS) transforma-

tion shown in Fig. 1(b).a)Electronic mail: tczhang@sxu.edu.cn
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In general, the relationship between the incoming and the

outgoing quantized modes in the effective BS is indicated as

â3

â4

� �
¼ t r

r t

� �
â1

â2

� �
: (1)

The transmission and reflection functions t and r are

given by16

tðr0;/Þ ¼ ð1� jr
0j2Þe�2i

ffiffiffiffiffiffiffiffiffiffi
1�jr0 j2
p

jr0j2e�2i
ffiffiffiffiffiffiffiffiffiffi
1�jr0 j2
p

e2i/ � 1
; / ¼ kL ¼ 2pL=k; (2)

rðr0;/Þ ¼ jr
0je�i

ffiffiffiffiffiffiffiffiffiffi
1�jr0j2
p

e�i/ � ei/e�2i
ffiffiffiffiffiffiffiffiffiffi
1�jr0 j2
p� �

jr0j2e�2i
ffiffiffiffiffiffiffiffiffiffi
1�jr0 j2
p

e2i/ � 1
; (3)

where r0 signifies the complex reflectivity of the mirrors and

the phase / is determined by the wavenumber K of the

incoming light and the cavity length L.

For this FPI, there are four configurations according to

the injection states and the detection methods, shown in

Table I. For the input states, we can choose either the classi-

cal states, such as CS or quantum states, such as FS and

SVS.18 For the detection methods, either the classical detec-

tion (CD), such as the MID which detects the average photon

haþai can be used, or the quantum detection, such as the

non-Gaussian detection of PNRD, which detects the exact

photon k, corresponding to the projection operator

Ĉ ¼ jkihkj, or the PD, which judges the even or odd number

of the impinging light, corresponding to the detection opera-

tor P̂ ¼ ð�1Þn̂ .1,19–21 So far, both the PNRD and PD by

TES22 or single photon counting module (SPCM) or multiple

SPCMs23,24 have been utilized in experiments, and the parity

detection is feasible, either by optical nonlinearities19 or the

measurement of Wigner function at the origin.21

Table I shows the transmission spectra of the four types of

detection strategies. Here, it has been assumed that the reflec-

tivity of the input and output mirrors is 70%. The first column

states the detection strategies: C means classical state (or classi-

cal detection method) and Q means quantum state (or quantum

detection method). So there are four combination: classical

state with classical detection (CC), quantum state with classical

detection (QC), classical state with quantum detection (CQ)

and quantum state with quantum detection (QQ). The second

column lists a few specific examples corresponding to the first

column with CS, FS, and SVS as input resources. MID, PD,

and PNRD in the third column provides the detection methods.

Once the input state and the detection method are given, one

can obtain the detection photon expectation given in the fourth

column, where P
jwi
D is the detected photon expectation by

means of detection method D with the state of jwi.
The corresponding normalized transmission spectra can

be obtained by calculating the average intensity output of the

interferometers. The normalization probability is

P ¼ 1

�n

X1
k¼1

k � PCS
k ¼

1

�n

X1
k¼1

k � PSVS
k ¼jtj

2: (4)

This normalized probability corresponding to the input of CS

and the detection of MID, which sets the standard resolution

and sensitivity of this FPI, cannot be improved upon by any

classical light sources with any traditional classical detection

methods. Thus, a cavity natural bandwidth (CNB) can be

defined, which determines the best resolution of the FPI and

the standard quantum sensitivity corresponding to the FPI, as

was done by SQL for light noise. This CNB is actually the nat-

ural bandwidth of the FPI given by the normalized spectra (4).

We found from the last column of Table I that for classical

detection, the spectra are the same for CS, FS, and SVS, which

actually give the standard bandwidth and the best resolution of

FPI in classical limit. However, for quantum detection,

depending on the input states, the standard bandwidth can be

surpassed. The quantum enhanced FPI quantitatively under the

quantum resources and detections will be analysed later.

Now regard the related schemes with SVS of light of

mode â1 and vacuum state j0i as mode â2. The average

photon number �n is determined by the squeezing parameter s
for the SVS: �n ¼ sinh2s. The output states of the FPI can be

obtained from the initial input states with two modes

jw; 0iâ1â2
¼jwiâ1

j0iâ2
transferred by the effective BS. By the

perfect k-photon detection, the photon number expectation

of detecting k photons is given by

PSVS
k ¼ TrðĈq̂SVSÞ ¼ 1

coshs

X1
m¼0

2mð Þ!½ �2jtj2kjrj2ð2m�kÞ

� tanhsð Þ2m

22m m!ð Þ2ð2m� kÞ!k!
: (5)
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3â t

4â

FIG. 1. (a) Fabry-Perot interferometer with complex amplitude r0 and t0 for

reflection and transmission coefficients of the input and output mirrors, respec-

tively. (b) The system is equivalent to an effective BS transformation. The effec-

tive BS has the complex amplitudes t and r for the input and output modes.

TABLE I. Different combinations for measuring the transmission spectra of

FPI.

Detection

strategies Input states

Detection

method

Detected photon

expectation

CC CS MID PCS
C ¼ �njtj2

QC SVS

MID PSVS
C ¼ �njtj2; PFS

C ¼ njtj2

FS

CQ PNRD PCS
k ¼

e�jaj
2 jrj2 jrj2k jaj2k

k!

CS

PD PCS
PD ¼ e�2jrj2 jaj2

QQ SVS See Eq. (5)

PNRD See Eq. (6)

PD PFS
k ¼ n!

ðn�kÞ!k! jtj
2kjrj2ðn�kÞ

FS PFS
PD ¼ ð1� 2jtj2Þn
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For the PD with parity operator, the photon expectation for

PD is similarly given by

PSVS
PD ¼

1

cosh s

X1
m¼0

X2m

k¼0

ð2mÞ!½ �2jtj2ð2m�kÞjrj2k

� tanh sð Þ2m
eipð2m�kÞ

22m m!ð Þ2k!ð2m� kÞ!
; (6)

where q̂SVS denotes the reduced density matrix for the

squeezed vacuum state of light in mode â1 and the reduced

density matrix q̂SVS can be obtained from the density opera-

tor q̂out. The schematic diagram is illustrated in Fig. 2.

To clearly show the quantum enhanced features of FPI,

the normalized transmission or reflection spectra for various

schemes can be analyzed. As an example, the normalized

detected spectra P
jwi
D for all detections with various input

states jwi are given. The case for k¼ 3, �n ¼ 3 is shown in

Fig. 3. The black line is for “CSþMID” scheme, which

gives the CNB of the FPI rc, i.e., the full width at half maxi-

mum (FWHM). It is observable that the widths of the spectra

for both “SVS þ PNRD” and “SVS þ PD” schemes are

much narrower than that of the CNB. The strategy of “SVS

þ MID” scheme fails to surpass the CNB. Consequently,

when both the quantum resource and non-Gaussian measure-

ment are employed simultaneously, the resolution of CNB

can be improved upon.

To further demonstrate the improvement of the resolution

of the spectra quantitatively, the ratio R is defined as the

FWHM rjwiD of the quantum enhanced FPI with the quantum

injection state jwi and detection approach D over the CNB of

rc, i.e., R ¼ rjwiD =rc. If R is less than 1, the scheme can exceed

the CNB and realize the super-resolution measurement.

To investigate the capability of improving upon the

CNB with “SVS þ PNRD” scheme, the ratio R is shown as a

function of detected photon number kðk ¼ 1; 3;…19Þ with

the fixed average number �n ¼ 19 in Fig. 4. The parameter R
becomes lower with the increasing k. The spectra are too

complicated to give an analytical expression of the limit.25

Briefly speaking, the scheme enables to achieve super resolu-

tion detection for the detection photon number k> 1.

The dependence of R on the input photon number is also

investigated by Fig. 5. Considering the scheme of SVS with

two quantum detections (PNRD and PD) and FS with the

PNRD, both of them can realize the super resolution and R
degrades with the increasing input photon number. Here, the

scheme utilizing the SVS shows some advantage over that of

the FS by means of PNRD and the anticipated best results of

R can be reduced to R¼ 0.094.26

From all the above results, it can be concluded that the

resolution of FPI can be enhanced either by “SVS þ PNRD”

or “FS þ PNRD” and both are better than the CNB.

However, on the whole, the best performance of quantum-

enhanced resolution for FPI is obtained for “SVS þ PD”

scheme, which can reduce the ratio R by one order of magni-

tude. This quantum-enhancement effect is different for the

detection method of PNRD and PD for the same input quan-

tum state. It should also be mentioned that without the non-

Gaussian detection, one cannot realize the super-resolution

measurement even if the nonclassical state such as SVS is

introduced for this FPI system.

FIG. 2. The scheme of quantum enhanced FPI.

DP

L

3n k

c

1.0

0.8

0.6

0.4

0.2

0.0
0.620.600.580.560.54

a  CS+MID 
b  CS+PNRD
c  FS+PNRD
d  CS+PD
e SVS+PNRD
f SVS+PD

FIG. 3. The normalized P
jwi
D as a function of L=k for �n ¼ 3 and a photon-

number resolved detection for k¼ 3. a (Black) line: CS þ CD (conventional

intensity detection); b (yellow line): CS þ PNRD; c (cyan line): FS

þ PNRD; d (green line): CS þ PD; e (red line): SVS þ PNRD; f (blue line):

SVS þ PNRD. The CNB is set as rc.

FIG. 4. The ratio of R as the function of the detected photon number for

“SVS þ PNRD” schemes when the input average photon number is 19. The

red diamond line denotes the “SVS þ PNRD” scheme and the dashed black

line is for fitting (see Ref. 25). The expected lowest value of R is 0.12 when

k approaches infinity.

FIG. 5. The ratio R as the function of average photon number for various

schemes. Here, we have chosen the detection photon number k¼ n. The red

(circle) line denotes the “SVS þ PNRD” and blues (cross) line and black

(diamond) line the “SVS þ PD” and “FS þ PNRD,” respectively. The

dashed lines are fittings (see Ref. 26).
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Now consider the minimum detected displacement, i.e.,

the sensitivity of the FPI. As is well known, classically, the

precision in these experiments is limited by the limitation

1=N1=2 with N being the number of probes (photons and

atoms) employed in the experiment. This limit is given by

SQL. Quantum metrology provides the possibility of over-

coming this limit when the entangled probes are used. There

are many scenarios which can surpass the SQL and reach the

HL given by 1=N.27–29 The sensitivity is also studied for FPI

by SVS and non-Gaussian measurement.

For the FPI, the general uncertainty dL of a length mea-

surement can be written as

dL ¼ DÔ

j@hÔi=@Lj
; (7)

where hÔi is the mean value of the detection operator and

DÔ is the standard deviation of the observable Ô. The oper-

ators of âþâ; Ĉ, and P̂ for the detection of MID, PNRD,

and PD, respectively, is defined as observable Ô, which will

be discussed below. For the SQL of FPI measured by MID,

it is

dLCS
�n ¼

jtjffiffiffi
�n
p
j@jtj2=@Lj

: (8)

Using the definition of Eq. (7), the sensitivity for above-

mentioned schemes of “SVSþPNRD” and “SVSþ PD”

becomes

dLSVS
PNRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSVS

k ð1� PSVS
k Þ

q

1

coshs

X1
j¼0

2mð Þ!½ �2 tanhsð Þ2j

22j � j!ð Þ2 � ð2j� kÞ! � k!
@ jtj2kjrj2ð2m�kÞ
� �

=@L

; (9)

dLSVS
PD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PSVS

PD

� �2
q

1

coshs

X1
m¼0

X2m

j¼0

2mð Þ!½ �2 tanhsð Þ2m

22m � m!ð Þ2 � ð2m� jÞ! � j!
eipj@ jtj2kjrj2ð2m�kÞ

� �
=@L

: (10)

The numerical results are illustrated in Fig. 6. For com-

parison, the corresponding sensitivity for “FS þ PNRD”

scheme was discussed in Ref. 16, and they demonstrated that

such a scheme can improve upon SNL. The zoom in

Fig. 6(b) tells a few strategies that can go beyond the shot

noise limit (the dashed-dotted line), which include “SVS

þ PNRD” (red line), “SVS þ PD” (black line), and “FS

þ PNRD” (blue line). However, the best performances are

obtained by “SVS þ PD” and “FS þ PNRD,” and these two

schemes have the same sensitivities around the resonant

point of FPI, while the former scheme “SVS þ PD” has

wider range of super sensitivity. On the whole, the use of

both the quantum states and the quantum detection (here the

non-Gaussian detection) show advantages and are superior to

that of sole use of either quantum states or quantum detec-

tion. Nevertheless, there is still an exception. The “FS þ PD”

scheme can never exceed the SNL. That means that the even-

tual performance of quantum enhanced metrology, at least

from the specific system that has been discussed here, is

strongly dependent on the quantum resources, the detection

strategies, and the specific design configurations. The general

rules of quantum enhanced metrology for given quantum

resources have yet to be established.

Thus, the non-classical source with appropriate detection

methods can indeed realize the super sensitivity measure-

ment. It proves again that quantum enhanced performance of

FPI by using simultaneously the SVS input and non-Gaussian

detection is feasible, and these schemes show great potential

in the field of quantum enhanced metrology.

The paper has focused on the bandwidth of the transmis-

sion spectra and the sensitivity of a FPI by SVS injection

based on the PNRD and PD. It shows that in any case the use

0.5
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0.3
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0.1

0.0
0.250.200.150.100.050.00-0.05

L

/L

3n n k

L

( )a
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0.01

0.00
0.160.140.120.100.080.060.040.02

 CS+MID
 FS+PNRD
 FS+PD
 SVS+PNRD
 SVS+PD( )b

FIG. 6. The uncertainty dLw=k as the function of L=k with the detection pho-

ton number k¼ n¼ 3 for different schemes. The black dotted line: CS þ
CD; the blue line: FS þ PNRD; the green line: FS þ PD; the red line: SVS

þ PNRD; the black line: SVS þ PD. (b) The zoom of (a).
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of SVS with two quantum detections, either “SVS þ PNRD”

or “SVS þ PD,” can improve the resolution of FPI and real-

ize the super-resolution. Only the use of the SVS with classi-

cal detection, the CNB could not be improved any more. We

also investigated quantitatively the bandwidth dependence on

different photon detection and different average mean photon

numbers, and the optimal performance that the scheme can

reach has been discussed. If the PNRD technique alone is

used, the appropriate photon number must be chosen to beat

the CNB either injecting quantum light or classical light.

In addition, the uncertainty for length measurement of

the FPI has been investigated. It indicates that the SVS with

PD can realize the super sensitivity measurement. It is well

known that quantum states can be used in quantum-enhanced

measurement in some strategies, such as SVS, but if quan-

tum detection is simultaneously used, such as the PNRD and

PD of the non-Gaussian measurement, the measurement pre-

cision could be further improved. The joint use of various

quantum light resources and the detection strategies could

open up the way for quantum-enhanced measurement, which

could be used for ultra-sensitive measurement, quantum

imaging and quantum lithography.
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